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Abstract 

For each irreducible representation [k] of U(n), a discrete irreducible unitary representa- 
tion of Sp(n) is constructed for which the oscillator Hamiltonian is bounded from below 
with its ground-state eigenspace transforming according to [k] under U(n). A basis of 
eigenstates for the harmonic oscillator is determined and the action of the Lie algebra 
sp(n) on that basis explicitly given. Connections with the Bohr collective vibrational 
model are established. 

1. Introduction 

The real symplectic group Sp(n) = Sp(n, ~)  is the noncompact  simple Lie 
group of  dimension n(2n + 1) given by  the linear transformations preserving 
a skew-symmetric bilinear form on a 2n-dimensional real vector space: 

Sp(n) = (g EM2n(R) lgtjg= f )  (1.1) 

where M2n(R ) denotes the set of  2n x 2n real matrices, elements o f  which are 
typical ly wri t ten 

and 

ga g2 t g = , gi E Mn(ff~) 
g3 g4] 

It plays a basic role in the qualitative theory of  Hamiltonian systems (Abraham, 
1967) as the group of  linear canonical transformations on 2n-dimensional 
phase space (Moshinsky and Quesne, 1971). Moreover, Sp(n)is the unique 
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64 R O S E N S T E E L  AND ROWE 

dynamical group containing SU(n) among the classical groups (Hwa and Nuyts, 
1966; Mukunda et al., 1965; Moshinsky and Quesne, 1970). 

In this article a discrete series of  unitary representations of Sp(n) is con- 
structed. Previously we have given the principal series for Sp(n) (Rosensteel 
and Rowe, 1975a). 

Each of the unitary representations of Sp(n) defines a skew-adjoint 
representation of the real Lie algebra sp(n) of the group Sp(n): 

sp(n)={x=(~: _~:t) EM2n(~)t=t=x=,xat=xa} (1.2) 

The complexification of sp(n) is denoted by Cn in the Cartan classification of 
complex simple Lie algebras (Jacobson, 1962). 

For applications to many-body physics, the interest in the Lie algebra sp(n) 
is through its isomorphism to bl(n), the real Lie algebra of operators spanned 
by the skew-adjoint one-body bilinear products in the position Xj~ and 
momentum Pja observables for an N-particle system in an n-dimensional 
Euclidean space, j = 1, 2 . . . .  , N, a = 1,2 . . . . .  n. A basis for bl(n) is given by 

N 
iLo¢ =i E (Xj~Pi#- XiePic~) 

j = l  

N 

i&e = i E 
j=1 

N 
iQa~ = i E X/c~X/~ 

/'=1 

(1.3) 

N 

j = l  

To establish the isomorphism of sp(n) with bl(n), define the real vector space 
Vn of self-adjoint operators spanned by 

N 

EXj  
j = l  

and 
N 

j= l  

Ot=l 
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Then the endomorphism of Vn given by 

-~ e~e  "~ for s ~ or(n), ~" ~ v.  
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(1.5) 

is a symplectic transformation with respect to the skew-symmetric form on Vn : 

' [ t <Oi[~',f']~> (~', f ) = - for f, ~" E Vn (1.6) 
<~1¢> 

for any wave function ~b v ~ 0. Since [~, ~"] is proportional to the identity 
operator-for ~', ~" E Vn, this form is independent of ¢. 

The symplectic transformation of equation (1,5) defines a representation 
of the Lie algebra bl(n) on VnbY 

~" -+ [s, g'] for s E bl(n), ~" E Vn (1.7) 

Then the isomorphism of bl(n) with sp(n) is given by the above action with 
the identification of Vn with R zn, the space on which sp(n) acts, given by 

Xc, ~ e~ 
a = 1 , 2 , . . . , n  (1.8) 

Pc~ -> e~ + n 

where e u E R 2n denotes the column vector whose only nonzero entry is one 
in the/~ row. The explicit isomorphism is 

iLa# ~ (E~# - E#a) + (E~ + n,# + n - E# + n,a + tO 

iS~¢ ~(Ec~o+ Eoc~)-(Ec~+n,¢+n + E¢+n,c~+n) 
(1.9) 

iQa~ "+ -- (Eez,~ + n + E~, a + n) 

iK~# "+ (Ea + n,# + E# + n, a) 

where Et~ u E M~n(~) denotes the matrix whose only nonzero entry is one at 
the intersection of the/~ row with the v column. 

An alternative formulation o f b l (n )  exhibits it as the algebra of skew-adjoint 
bilinear products of boson operators in n dimensions. Define the boson 
destruction and creation operators 

1 

1 

which obey the boson commutation rules 

[aj~, d~l  = ~;~8~, [ ~ ,  ~k~] = [G,  4~1 = 0 

(1.10) 

(1.11) 
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Then one finds the following correspondence with equation (i.3): 
N 

]=1 

N 
i&e = Z (aj aje * * - a~a'ie ) 

]-=1 

• N 
1 

1=1 

i N g g ~ a  

]=1 

( 1 . t 2 )  

For a single particle in one dimension, Itzykson (t967) has given the 
isomorphism between sp(1) and bl(1) and shown that exp (s) for s E b/(1) 
defines a unitary representation of the twofold covering group of Sp(1). More- 
over, this representation is the direct sum of two irreducible discrete representa- 
tions. 

Our interest in sp(n) is for its application to N-particle systems (N large) as 
a collective model for the description of nuclear collective vibrational and 
rotational states. In one dimension, sp(1)  was shown by Goshen and Lipkin 
(1959) to exhibit vibrational bands for its irreducible discrete series representa- 
tions. This result was subsequently extended to two-dimensional systems 
(Goshen and Lipkin, 1968). It is in sp(3) that one expects to have a model 
capable of explaining both vibrational and rotational bands. Indeed, Bieden- 
ham and Louck (1971) have outlined the possible applicability of sp(3) 
representations to the problem of extending (dichotomic s-parity) conjugation 
symmetry (Biedenharn, 1969) to a complete classification scheme for 
rotational bands ofsu(3) (Racah, 1964)• 

The Lie algebra sp(3) is the smallest Lie algebra containing both the sub- 
algebras su(3) and s/(3). Her/ce, sp(3) gives the minimal algebraic model 
incorporating both the Elliott su(3) model (Elliott, 1958; Harvey, 1969) and 
the s/(3)model of Weaver and Biedenharn (t972)for rotational band systems. 
The algebra s/(3) is the Lie algebra of SL(3), the group of volume-preserving 
(unit determinant) linear transformations of three-dimensional Euclidean space. 
The observables spanning s/(3) are the total angular momentum L~t~ and the 
traceless incompressible stretching (shear) momentum S~(} ), cf. equation (1.3), 

= - - 8 eTrS (1 .13 )  

In Figure 1, we have indicated various subalgebra chains ofsp(3). Since 
u(3) is the symmetry group of the harmonic oscillator, the chain 

sp(3) > u(3) > su(3) > so(3) (1.14) 
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sp(3) 

cm(3) 

[IR 5] so(B) sl(31 su(3) 

so(3) 

Figure 1. Subalgebra chains ofsp(3). 
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is mostappropriatefor shell phenomena. On the other hand, both of  
the chains 

and 

sp(3)>cm(3)> [RSlso(3)>so(3 ) 

sp(3) > cm(3) > s/(3) > so(3) 

(1.15) 

(1.t6) 

aim at the description of collective effects. The Lie algebra cm(3) is spanned 
by the Lie algebra sl(3) and the mass quadrupole moment, iQa#, cf. equation 
(1.3); cm(3) is isomorphic to a semidirect sum [R 6] s/(3). The cm(3) model is 
an algebraic formulation of the liquid drop model (Rosensteel and Rowe, 
1975b). Moreover, the irreducible representations of cm(3) have been deter- 
mined (Rosensteel and Rowe, 1976). The semidirect sum [ N 5] so(3) is the 
Lie algebra spanned by the algebra so(3) togettier with the traceless mass 
quadrupole moment, 

Q(~ = Qc~# - ½6~t~TrQ (1.17) 

It has been shown that the irreducible representations of [R 5] so(3) yield an 
algebraic model equivalent to the phenomenological rotational model (Ui, 
1970; Weaver et al., 1973). Hence, if the nuclear states are chosen symmetry 
adapted to the chain (1.15), then E2 transition rates are predicted in conformity 
with the rotational model. Howei, er, if the chain (1.16) is applied instead, the 
s/(3) prediction for E2 transitions is obtained. Weaver and Biedenharn (1972) 
have reported that the sl(3) prediction for interband E2 transitions is a quali- 
tative improvement on the rotational model. 

The plan of this article is to review in Section 2 the discrete series for Sp(1) 
and its Lie algebra sp(1). In Section 3, the construction for'the Sp(1) series 
is generalized to Sp(n) yielding a discrete series of irreducible unitary representa- 
tions of Sp(n) with nondegenerate ground states for the harmonic oscillator 
Hamiltonian. A further generalization of the series of Section 3 is considered 
in Section 4, which gives representations with degenerate oscillator ground- 
state eigenspaces irreducible with respect to the action of U(n). 
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2. Discrete Series for Sp(1) 

In this section the discrete series for Sp(1) is briefly reviewed. When 
suitably generalized, the procedure used for Sp(1) yields the construction for 
the Sp(n) discrete series, cL Section 3. 

A large class of unitary representations of the group Sp(1) = SL(2, R) have 
been reported and their properties examined by several investigators including 
Bargmann (1947), Gelfand and Graev (1953), Sally (1967), and Lang (1975). 
In addition, the skew.adjoint representations of the isomorpl-dc Lie algebras 
sp(1) = sl(2, •) ~- so(2, 1) = su(1, 1) have been given by Bargmann (1947), 
Barut and Fronsdal (1965), Barut (1965), Barut and Phillips (1968), and 
Biedenharn et al. (1965). Holman and Biedenharn (1966) have determined 
the Clebsch-Gordon series for the discrete series. The Lie algebra representa- 
tions have found many applications in addition to their use for the explana- 
tion of vibrational bands in one-dimensional systems (Goshen and Lipkin, 
1959). Quesne and Moshinsky (1971) have evaluated the radial integral in the 
expression for the matrix elements of multipole operators with respect to 
oscillator states in a one-particle system by the use of sp(1). In this connection, 
see also Boyer and Wolf (1975). A theory of boson quasispin has been formu- 
lated by Ui (1968). Finally, Gambardella (1975) has shown that su(1,1) is the 
dynamical algebra for that class of many-particle Hamiltonians with a quad- 
ratic pair potential plus an arbitrary transtation-invariant position-dependent 
potential homogenous of degree -2 .  See also Perelomov (1971) and Calogero 
(1971). 

The positive zrw + and negative 7rw- discrete series representations for 
Sp(1) = SL(2 R ) are both indexed by the positive integers w = 1, 2, 3 , .  • .. 
The carrier space j r 2  (w)± for the positive, or, respectively, negative, discrete 
series zrw -+ is the space of complex-valued functions f holomorphic, or, 
respectively, conjugate holomorphic, in the upper half $1 of the complex plane 
for which the integral 

f - ~ -  yWlf(z)lZ < oo, z = x  + iy (2.1) 

s, 

is bounded.oYf2(w) + is a Hilbert space with the inner product 

(f, g)=  f ~ 2 Y  yW f-~g(z), f,,g CJta2(w)-+ (2.2) 
. I  

sl 
Sp(1) acts on the upper half plane Sa by 

z - + M ' z - ( a z + b ) ( c z + d )  -1, zeS1 (2.3) 

for M = (c a 3) E Sp(1). The measure on $1 invariant with respect to this 
action is 

d~2(z) = dxdy/y 2, z = x + iy (2.4) 
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Then the positive and negative discrete series are given by the unitary right 
actions of Sp(1) on.J/a2(w) -+, 

[Tr+(M)f] (z) = (cz + d)-Wf(M • z), fEJ ta2(w)  + (2.5) 

[rrw-(M)f] (z) = (ez + d)-Wf(M . z), f E j g a 2 ( w )  - (2.6) 

fo rM= (~ ~) E Sp(1). 
Each unitary right action of Sp(1) defines a skew-adjoint representation of 

the Lie algebra sp(1) by 

+ d 
[rrw-(J0f] (z) =d-0 {rrw+-[exp (-OX)] f}(z) o =o' f E J ~ 2 ( w )  +- (2.7) 

for X E sp(1). It is most convenient to specify a representation of sp(1) by 
giving its action on a basis of the complexification of sp(1), viz., 

0, 

and 

where 

-+{: i) 
N 

U=½ ~ (~2 +X?) 
1=1 

is the harmonic oscillator Hamiltonian, cf. equations (1.3), (1.9), and (1.12). 
For the positive discrete series, one computes the action to be 

g + ( H ) f  = - i 0  + z 2) Of 3z - iwzf  

Of+ iw(z ~,d (da*)f= i(z - 0 2 gz - Of  

rr+(aa)f = i(z + 0 20_f+ iw(z + i ) f  
oz 

for fEJt°2(w) + 

(2.9) 
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A complete set of eigenstates of the harmonic oscillator Hamiltonian 

(2.10) 

Since 

satisfy 

IN) = CNf  N (2.14) 

( N I N )  = N w (2.15) 

7rw+(ata~.)lN)_ CN ( N + w ) I N +  2) (2.16) 
CN+ 2 

we have 

(N + w)Z( N + 2 ] N + 2) =(N{~rw+ (aa)'trw+ (aYaY) lN )  

= ( N + w ) ( N - w + 2 ) ( N [ N )  (2.17) 

Hence, (N iN) = Nw for all 1 N) if and only if 

CN 2 _ ( N -  w + 2) (2. l a) 
c-ZS+ ~ (w + w ) 

A solution to this is given by 

G / ( N + w -  2)!! 
~v = /  - ( ~  ~-~i (2.19) 

~+(H)fN = Nfv, fN ~Y2(w)+ 

is given by 

fN(Z) = (Z -- i) (N-  w)/2(z + i) -(N + w)/2 (2.11) 

with the spectrum 

N = w , w +  2, w + 4  . . . .  (2.12) 

due to the condition on the analyticity offTv in the upper half plane $1. Then 
the action ofsp(t)  on the basis states l~ is given by 

~+(a*a* )f~v = - ( w  + N).~v + 2 
(2.I3) 

lrw+(aa)fN = (w - N ) f  N_  2 

Since two eigenstates of a self-adjoint operator belonging to different eigen- 
values are orthogonal, the vectors fN and fM are orthogonal for N 4: M. The 
norm of fN  may be determined by a direct computation using the inner product 
on S 1, equation (2.2). Mternatively, and more easiIy, we may normalize the 
vectors far to have a common value, say the norm of the ground state 
Nw = [[fwll 2. Yht/s, we let 
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In summary, the action of the positive discrete series of sp(1)on the ortho- 
normal basis 

IN>, N = w, w + 2, w + 4 . . . .  (2.20) 

is given by 

7rw+(H) i N)  = N IN> 

7rw+(atat)lN>=-~/N(N + 2 ) -  W ( w -  2 ) lN  + 2> (2.21) 

7rw+(aa) IN> = - ~ / N ( N "  2 ) -W(W- :  2 ) I N -  2> 

Required for representations of the group Sp(1), the restriction on w to 
the positive integers may be lifted for the Lie algebra representations. This 
may be verified for the action of equation (2.21) by checking directly for all 
real w that the representation of the real Lie algebra sp(1) is by skew-adjoint 
operators, which satisfy the relevant commutation relations. The representa- 
tions of sp(1) with nonintegral w define unitary representations of  the universal 
covering group of Sp(1). 

For the negative discrete series 7rw-, the spectrum of the oscillator Hamiltonian 
is N = - w  - 2r, r = 0; !,  2, ,.... The eigenfunction i n •2 (w ) -  belonging to the 
eigenvalue N = - w  - 2r is f_N(z). Since the spectrum of the oscillator Hamiltonian 
for the positive series is bounded from below, it, rather than the negative series, 
is of most interest for applications. 

3. Discrete Series of  Sp(1): Nondegenerate Ground States 

The extension to Sp(n) of the discrete series given in Section 2 for Sp(1) 
requires a generalization of the upper half plane together with an action of 
Sp(n) to parallel that of equation (2.3). C. L. Siegel (1943) has given the 
appropriate generalization. Define the Siegel half-plane Sn to be the space of 
symmetric complex n x n matrices z = x + iy for which y = Im z is positive 
definite. Then Sp(n) acts on Sn by 

z-~M" z=(az + b)(cz +d) -1, zESn  (3.1) 

for M = (a 5) E Sp(n). Moreover, the measure on Sn invariant with respect to 
this action is given by 

d a ( z )  = l~ dxii A ]~ dye] 1 (3.2) 
i<_i i<__i 

where z = x + iy is coordinatized by xi] , i < ], and y~.~ i </~ 
A series of discrete representations 7r w of Sp(n) indexed by the positive 

integers w = 1, 2, 3 . . . .  with n0n'degenerate ground states may now be given. 
Let the carrier space J~f2(w)-+ for the representation 7rw +- be the space of 
complex.valued functions fholomorphic, or, respectively, conjugate holo- 
morphic, in the Siege1 half-plane Sn for which the integral 

f di2(z)(dety)WLf(z)[ 2 < ¢% z =x +iy (3.3) 

Sn 
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is bounded. $~a2(w)± is a Hilbert space with the inner product 

(f, g) = f d~2(z)(det y)WT(~g(z), f, g E Jta2(w) ± (3.4) 
Sn 

The unitary right action of Sp(n) on y2(w)±  is given by 

[Trw+(M)f] (z) = det (cz + d)-Wf(M • z), f E  )~2(w)+ (3.5) 

[~rw-(M)f] (x) = det (cz+d)-Wf(M • z), f E  ~:2(w)- (3.6) 

for M = (a a b) E Sp(n). Observe that for n = 1 this action is just that given in 
Section 2, cf. equations (2.1)-(2.6). 

A skew-adjoint representation of the Lie algebra sp(n) is defined by 

+ d + o=o' [Irw-(X)f ] (z) = d-0 {~rw- [exp (-0X)] f}(z) f e Y 2 ( w )  ± (3.7) 

for X E sp(n). For the positive series 7r + on ~C2(w) +, this representation may 
be computed on the basis ofsp(n) of equation (1.9) to be 

1 

a¢ 
[~rw+(iSa#)f] (z)=-2wSc,3f(z)-~(z~] ~z~ + Zt~i ~ i )  

i \  PJ 

[Trw+(iQ,~a)f](z)= ~)f + af az~: az~ (3.10) 

[~+(iK~a)f](z) = w(z~a + za~)f(z) + ~ (zi:~/ + zi:~:) ~/  ~: ~ (3.11) 

for f E  3(¢'2(w) + . 

We would like to solve the eigenvalue problem 

~w+(/I-/)/=/Nf (3.12) 

for the harmonic oscillator Hamiltonian, 

H = ½ E (K=~ + Qaa) (3.t3) 
ot 
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From equations (3.10) and (3.11),  this eigenvalue problem is given by 

w(Trz) f ( z )  + ~. (1+ z2)q ? f  =/Nf (3.14) 
ij OZiJ 

Every holomorphic solution f C ~ 2 ( w )  + can be given as a power series in 
= z - iI in a neighborhood of ~" = 0, 

r(f) = c  ~°~ + ~ ~ ..- ~ c~#~...a~3~.., f~r (3.1s) 
r=l aa~#l at-< ~ 

with C (r)" a.a~ symmetric under the interchanges a~& ~ ai/3/. Thus f(~') is a 
solution to equation (3.14) if and onty if 

i ( N -  nw)C (°) +i ~ ( N -  n w -  2r) ~. . "  ~.. C~)#1... a~ar:o ~ #1"'" fcq¢r 
r=l oq < fll ar<_#r 

(¢ --w(Trt) c<°~+ ~ ~ . . . .  ~ C~)~,--.~,~r f~#," ~f~,'"f~r 
r=l ¢h <- /~1 ¢~r<-#r 1 

+ w(Trf)fc~a. • • far&) (3.t 6) 

Hence, if N:/= nw, nw + 2 . . . .  , nw + 2r, then C (°) = C O) . . . . .  C (r) = O. 
Therefore, the spectrum of rrw+(H) is 

N = n w + 2 r ,  r = 0 ,  1,2 . . . .  

An eigenstate belonging to the ei~envalue N = nw + 2r is given by a choice of 
C~)¢, "'" ~r#r; the coefficients C(~1. . .  %~s for s > r are then defined through 
equation (3.16). Thus the dimension of the eigenspace belonging to the eigen- 
value N = nw + 2r equals the dimension of the space of symmetric r tensors in 
a space of dimension m = ½n(n + 1), viz., (m +rr- 1), see Greub (1967). 

In order to explicitly determine the eigenstates, we first simplify the eigen- 
value equation (3.12). Let an eigenstate f b e  written as 

f ( z )  = det (z + iI)-Web(z) (3.17) 

with ~(z) analytic in Sn. Then f i s  an eigenstate belonging to the eigenvalue 
N = nw + 2r if and only if • satisfies 

~"zj (1 + z2)q ~zq -  2ir~(z) (3.18) 

since for any invertible matrix gii 

0 
Ogo (det g) = (det g)(g-1)// (3.t9) 
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The solutions to the eigenvalue problem for qb belonging to the eigenvalue 
r = 1 are 

#P,v(z) = [(z - i I ) ( z  + i i)-11, v (3.20) 

as can be shown by expanding q~uv in a power series in f = z - / / a b o u t  f = 0. 
Since the operator Yi j ( I  + z2)iiO/Ozij is a derivation, eigenfunctions ~5 belonging 
to integral r eigenvalues are given by the product  functions, 

cb~h vl (z)cb/a v~ (z)  . . . ~Urvr(Z) (3.21) 

Hence, a complete set o f  eigenstates for the harmonic oscillator 7rw+(H) 
belonging to the eigenvalue N = n w  ÷ 2r  is given by  

Y~hv, u~v~..-UrVv ( z )  = det (z + iI)-WqO~hv~ (Z)q~/a~v~(Z) " " ~Uru¢Z) (3.22) 

since the number of  independent solutions f~hvr., urur equals the dimension of  
the space of  symmetric r tensors in a space o f  dimension m = ~n(n + 1). 

The action of  the Lie algebra sp (n )  on the basis states f~hu~ "" , rur  may be 
computed to be 

- ~ (f,,~ " , ~ "  ~ +f , ,~"  , ~ ' "  , e ~ )  
S = I  

t" 

~+(~a~)& ~ . . .  , ~  -- - ~ (~ ,¢8~  + ~ , ~ ) f , ~  ...,~,--~-... ~,~  (3.23) 
s = l  

where 

f . , ~ ,  t - - _  _ f . , ~ ,  
" " " # s v s "  " " / a r V r  " " " g s  - l v s ~  1/as+ l v s +  1 "  " " # r V r  

s : l  

The unitary group U(n)  is imbedded in S p ( n )  through the homomorphism 

X = U +  i V @  U(n)  ~ E S p ( n )  (3.24) 

Then the representation of  U(n)  is given by 

7r+(X)fulv~u2u2 " " " Ur~r = (det ×)w ~ . . .  Z f~v; .  . . u~u~×u;ul Xv;vl- • • 

";~ ";~; 0 . 2 5 )  
x X**,:u~X~,,% 

for x ~ U(n). 
In particular, the action o f  S U ( n )  on the first excited level N = n w  + 2 is 

~ ( x ) f ~  = 7. f~v;x,;ui x~;~l (3.26) 
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which is equivalent to the irreducible representation (2, 0 , . . . ,  0) of SU(n) 
(Hamermesh, 1962). Hence, the action of SU(n) on the rth level N = nw + 2r 
is equivalent to the (reducible) symmetric tensor product representation of 
r copies of the (2, 0 . . . . .  0) representation of SU(n). 

In Figure 2a, the first few oscillator levels for the ¢rw + representation of 
Sp(3) are indicated together with the irreducible representations (X,/a) of 
SU(3) spanning each degenerate level. In addition, the angular momenta L of 
each level are given. This angular momentum spectrum is simiIar to that of 
the collective (liquid-drop) vibrational model of Bohr (1952). In the Bohr 
model, the equally spaced levels are given by the symmetric tensor product 
representation of SO (3) built upon the L = 2 representation; the angular 
momenta of the first few levels are given in Figure 2b, see Hecht (1964). The 

(x,/a) x 
(6,0)(2,2)(0,0)  3w+6 

( 4 , 0 ) ( 0 , 2 )  3 w + 4  

(2,0)  3w + 2 

(0, o) 3w 
(a) 

L N L 

0 3, 2 3, 3, 4 z, 6 __6 0, 2, 3, 4, 6 

0 2, 2 2, 4 4_ 0, 2, 4 

0, 2 2 2 

0 0 

(b) 
Figure 2. (a) In the Sp(3) model, the first four oscillator levels are indicated. The SU(3) 
irreps (X, u) and, angular momenta L spanning each level are given. (b) In the Bohr model, 
the angular momenta L of the oscillator levels are given. 

evident difference between the Bohr model and the Sp(3) model for collective 
vibrations lies in the additional monopole L = 0 excitation of the first excited 
level in the Sp(3) model. 

In order to determine the inner product i n ~ 2 ( w )  +, it is most practical to 
use a method similar to that employed in Section 2 for the Sp(1) representations 
rather than to attempt a direct computation from equation (3.4). For Sp(3) 
one first chooses an orthogonal basis [N(X/a)KLM) symmetry-adapted to the 
subgroup chain 

Sp(3) > U(3) > SU(3) > SO(3) > SO(2) (3.27) 

This basis may be computed using the fractional parentage and Ctebsch-Gordon 
coefficients for SU(3) (Hecht, 1965). Moreover, the norm of the states 
IN(X/a)KLM) carrying a given (X/a) representation of SU(3) may be fixed to a 
common value, say the norm of the highest weight state denoted • [N(X/a)]. 
Finally, the norms of the highest weight states are made equal to the norm of the 
ground state by the following inductive procedure: If the norms of  the vectors 
in the N = nw + 2r level equal that of the ground state, then the norm of 
q~ [iV + 2(Xg)] is given by 

(~ [iV + 2(X#)], rrw+(s~:)rrw+(S)4) IN + 2()V.t)] ) 

= (rrw+(s)~[N + 2(X/a)], rrw+(s)¢ [N + 20t/.t)] ) (3.28) 
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for any s E bl(3), quanta-annihilating say s = Eaaaaa, for which the right-hand 
side of equation (3.28) is nonzero. 

We close this section with the remark that the restriction to integral values 
for w, while necessary for group representations of Sp(n), is not required for 
the Lie algebra representations of sp(n), equation (3 •23). 

4. Discrete Series o f  Sp(n): The General Case 

The discrete series of irreducible unitary representations of Sp(n) with non- 
degenerate ground states given in Section 3 possesses a further generalization 
due to R. Godement (1958). Let p be an irreducible tensor representation of 
GL+(n) carried by a finite-dimensional vector space F, where GL+(n) denotes 
the group of n x n real matrices with positive determinant (Weyl, 1946). Then 
Godement has given a positive and negative discrete representation lrp + of 
Sp(n) for each such p that is unitary and irreducible. 

The carrier space~Cf2(p) -+ for the representation zrp -+ is the space of functions 
f taking values in F holomorphic, or, respectively, conjugate holomorphic, in 
the Siegel half-plane Sn for which the integral 

f da(z)llpfylP)f(z)llF 2 < oo z =x +iy (4.1) 
Sn 

• 2 + is bounded• ~ (p)- is a Hilbert space with the inner product 

if, g)= ~ d~(z)(pO, ll:)f(z),pfy~12)g(z))p, f , g~X2(o)  +- (4.2) 
Sn 

The irreducible unitary right action of Sp(n) on ~2(p)-+ is given by 

[~r~-(M)fl(z)= p(cz +d)- t f (M • z), f E ~ 2 ( p )  + (4.3) 

[TrT(M)f](z)=p(cz+d)-l f(M • z), fEfft° 2(P) - (4.4) 

for M = (a a b) E Sp(n). Observe that the representations of Section 3 are 
given by the one-dimensional representations of GL+(n), p (g) = (det g)W. 

For the skew-adjoint representation of the Lie algebra sp(n), also denoted 
by 7r~, we wish to solve the eigenvalue problem for the harmonic oscillator 
Hamiltonian H. 

A rank l tensor representation p[X] of GL+(n) is determined by an n-tuple 
of positive integers [X] = [X 1, X2,. : .  Xn] with X1 > X2 >_- " " " >_Xn >_ 1 such 
that n 

i=1 

The representation p[X] is irreducible and carried by a finite-dimensional 

vector subspace, denoted F[X] of the tensor product space <~ C n = c n  ® c n  ® 

. . . ® C  n (l copies). In fact, F Ix] is a subspace of ~ C n irreducible with respect 
to the action of the permutation group on l symbols ~ given by 

P (4.5) 
el ® e2 ®" • • ® el -+ epo ) ® ep(2) ®" • ' ® ep(1) 
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for p E S~ t and 

t C n FIXl 
® ~ ® (4.6) 

IX] 

The irreducible representation pIxl is the restriction to F Ix] of  the rank l 
l 

tensor representation pt of  GL+(n)  on ® C n given by  

P~(g)(%®%e"'®eoz)= Y % ® % ®  "'" ®%)g,,o,g,,o,g,~z 
r~% . • .  r I 

(4.7) 

for g E GL+(n). Hence, it is evident that ~(pt)+_ ~ ® 9~v2(p[x])_+ and 
Ix] 

+ ~ + 
crib/ -- ® n~ [x]. We shall determine the spectrum and eigenstates for n~l(H) 

[Xl 
• 2 I +  • • + m X Co ) - ; t he  solutmns to the elgenvalue problem for ~r~ [x] are then given 
by the restriction to the irreducible subspace j~v2(p [ x])+- 

If n ~ l ( H ) f  = N f  and f E ~/~v2~l)+ is given by 

then 

~ ) =  fo, o . . . al(z)ea, ® e o  ® .  . . ®eat (4.8) 
~ 0 2 • . . 0 l 

Z f f k : , r / ~ f o l a ~ . . . 7 - / c . . . O l ( Z )  + ~ ( I  + Z2)i] afOlO~ ' ' "  O1 
1, = x i~ a z  i /  

= iNf~aa2 . . ,  at(z) (4.9) 

Iffal~= . . .  az(z) is expanded in a power series in ~" = z - i/, an equation for the 
coefficients of  the expansion is obtained as in equation (3.16) of  Section 3. 
As a result it is deduced that the spectrum of  7r+ot(H) is 

N = l + 2r, r = 0, 1, 2 . . . .  (4.10) 

Moreover, the dimension of  the eigenspaee in 9~2(pt) + belonging to the eigen- 
value N = l + 2r equals nt( m + r -  a ). 

For each/-tuple of  integers ('/'1'/'2 " • " Tl) , 1 <__ rk < n, consider the vector 
in S ~ ( p ~ )  + , 

f(rlr2 . - . rt) = E ®eo, ® e% "'" ®'eal(z + il)-~l~ (z + iI)-~r " " 
o~o~ . - .  o l 

× (z + iI);~z~(z)  (4.11) 

where q~ (z) is complex-valued and analytic in Sn. Then f ( r : ~  . . .  r~) is an eigen- 
vector of  n i t  (H) belonging to the eigenvalue N = l + 2r if  and only if  ~ satisfies 

~..q (I + z2)i: ~ = 2ir~(z) (4.12) 
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But the solutions cb (z) to this equation were given in Section 3 in equations 
(3.20) and (3.21). Hence a complete set o f  eigenstates o f  ~ I ( H )  in y 2 ( J ) +  is 

given by 

*Ij3(TIT2 "''.TI.)~FI)g(Z) = ~ eol® eo ®" .®eot (z + il)~ (z + il)~z " - v1#2 v2 • 
qo~ " " • a l 

(z + iI)-~}q. . . <Du, v~ (z)cbu, v ,(z)  " " " CbUrvr(Z) (4.13) 

The action of  the subgroup U(n) is given by 

7( p l(X) f~p 1 
+ ( ~ . . .  : x z x :<di; : larVr 

• i " ' "  7'1 ~'~v~ u ' / .  

X X#;t.q Xvl.  1 . ," X#'rl~rXprVr . . "  XC:q • , , X'riz l (4.i4) 
for X @ U(n). Restricted to the irreducible subspace~f°2(p[xl) + it is clear that 
the ground state transforms according to the [X] irreducible representation of  
U(n). In particular, the representation vw + of  Section 3 is the restriction to the 
subspace defined by [w, w . . . . .  , w]. 

We have thus found that for every irreducible representation [X] o f  U(n) 
there is a discrete irreducible unitary representation of  Sp(n)  for which the 
oscillator Hamiltonian is bounded from below with its ground-state eigen- 
space transforming irreducibly under U(n) according to [X]. 
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